
Convex Underestimation of Twice Continuously

Differentiable Functions by Piecewise Quadratic

Perturbation: Spline aBB Underestimators

CLIFFORD A. MEYER and CHRISTODOULOS A. FLOUDAS
Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
(e-mail: floudas@titan.princeton.edu)

(Received 1 April 2004; accepted in revised form 7 April 2004)

Abstract. This paper describes the construction of convex underestimators for twice continu-

ously differentiable functions over box domains through piecewise quadratic perturbation
functions. A refinement of the classical aBB convex underestimator, the underestimators derived
through this approach may be significantly tighter than the classical aBB underestimator. The

convex underestimator is the difference of the nonconvex function f and a smooth, piecewise
quadratic, perturbation function, q. The convexity of the underestimator is guaranteed through
an analysis of the eigenvalues of theHessian of f over all subdomains of a partition of the original

box domain. Smoothness properties of the piecewise quadratic perturbation function are derived
in a manner analogous to that of spline construction.
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1. Introduction

In this paper the convex underestimation of C2 continuous functions is
investigated. This work extends and refines the convex underestimation
approach used in the aBB global optimization algorithm developed by
Maranas and Floudas (1994), Adjiman et al. (1996, 1998a, b), and Floudas
(2000). The aBB algorithm is based on the idea of constructing a smooth
convex underestimator of a nonconvex C2 continuous function, f : Rn ! R,
using a convex quadratic perturbation function, q : Rn ! R. The convex
underestimator / : Rn 2 x! R is defined as follows:

/ðxÞ :¼ fðxÞ � qðxÞ:
The aBB convexification approach can be viewed as an approximate solu-
tion to a more general convexification problem, that of finding a convexify-
ing perturbation function qðxÞ which minimizes a measure, l, of the
separation between a nonconvex C2 continuous function fðxÞ and the con-
vex underestimator fðxÞ � qðxÞ. This can be stated in the form,
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min
q

lðqðxÞÞ

subject to

r2ðfðxÞ � qðxÞÞ � 0 for all x 2 x;

qðxÞP 0 for all x 2 x;

where x � R
n denotes the hyperrectangle defined by upper and lower

bounds on the elements of x, that is x :¼ ½x1; �x1� � � � � � ½xn; �xn�. The rela-
tion r2ðfðxÞ � qðxÞÞ � 0 means that r2ðfðxÞ � qðxÞÞ is positive semidefinite.
The objective function may be �qðxÞ, the separation distance, or some
other measure such as the overestimation volume

R
x�qðxÞ dx. This optimi-

zation problem may have a solution functional q�ðxÞ which is nondifferen-
tiable and nonconvex.
In the classical aBB approach, a series of simplifications are made to yield
an efficient convexification procedure. The first of these simplications is the
imposition of a quadratic structure on the perturbation function,

qðxÞ :¼
Xn

i¼1
aið�xi � xiÞðxi � xiÞ:

To ensure that qðxÞ is nonnegative, a is assumed to be nonnegative.
Observe that qðxÞ, a quadratic function with a diagonal Hessian matrix

r2qðxÞ :¼ 2 diagðaÞ
has an eigenvalue–eigenvector structure that is uniform over the entire
domain x with eigenvectors that are aligned with the coordinate axes. In
the work of Adjiman et al. (1998b) a second simplification is introduced in
which the interval extension Hx is used instead of r2fðxÞ itself. The interval
extension of the matrix r2fðxÞ 2 R

n�n is a matrix of intervals of R. Each
element Hx

ij of the matrix Hx is defined in such a way that

o2f

oxi oxj

�
�
�
�
x

2 Hx
ij for all x 2 x:

Computing the tightest possible interval extension is in itself a global
optimization problem. In practice an interval extension can be calculated
using interval arithmetic (Moore, 1966; Ratschek and Rokne, 1984; Ne-
umaier, 1990). The overestimation made in the interval calculations may
result in a significant loss of accuracy. Adjiman et al. (1998b) applied the
work of Gerschgorin (1931), Deif (1991), Rohn (1996), Mori and Kokame
(1994), Stephens (1997), Kharitonov (1979), Hertz (1992) and Neumaier
(1992) to compute a vectors that guarantee the convexity of the underesti-
mator. The tightness of the underestimator is dependent on the particular
a calculation method.
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In NLP and MINLP applications the number of variables that participate
in a given nonconvex function is usually considerably less than the total
number of variables participating in the complete set of nonconvex func-
tions. Any relaxation based branch and bound algorithm such as the aBB
is such that the refinement of the convex underestimator of any nonconvex
constraint is contingent on the reduction of the domain of a variable par-
ticipating in that constraint. Consider, for example, the NLP

min
x2x

fðx5Þ

subject to

g1ðx1; x2ÞO 0;

g2ðx2; x3ÞO 0;

g3ðx3; x4ÞO 0;

g4ðx4; x5ÞO 0

in which f and gi; i ¼ 1; . . . ; 4 are C2 continuous nonconvex functions. Within
the aBB framework each of these functions would be replaced by a convex
underestimator. To improve the underestimation of f, branching on x5 would
need to occur, but this would not improve the underestimation of g1; g2; or
g3. Only after branching on x2;x3 and x5 would the convex underestimator
of the objective and each constraint be refined. In the process the branch and
bound tree would be expanded and a number of convex optimization prob-
lems would have to be solved. If the convex underestimators could be refined
efficiently and without branching a more efficient global optimization would
result. In this paper the form of the aBB perturbation function and the way
in which it is calculated are reexamined, a novel spline based method for con-
vex underestimation is proposed and an efficient means of computing these
tighter underestimators is elucidated.
The remainder of this paper is structured as follows. In Section 2 the

form of the new convex underestimator is introduced. A geometrical inter-
pretation of this underestimator is presented in Section 3. Properties of this
function are proven in Section 4. Section 5 discusses a modification of this
underestimator which relaxes the requirement that the a values be positive.
The implementation of this underestimation approach is discussed in Sec-
tion 6 and computational results are provided in Section 7.

2. An a Spline Underestimator

The size of the domain x effects the result of every step in the a calculation
and strongly influences the tightness of the resulting convex underestima-
tor. In particular, reducing x reduces the mismatch between the assumed
quadratic functional form and the ideal form; it reduces the overestimation
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in the interval extension of the Hessian matrix; and the maximum separa-
tion distance has been shown to be a quadratic function of interval length
(Maranas and Floudas, 1994). It is therefore useful to construct a convex
underestimator using a number of different a vectors, each applying to a
subregion of the full domain x.
Let fðxÞ : Rn ! R be a C2 continuous function. For each variable xi 2 R

let the interval ½xi; �xi� be partitioned into Ni subintervals. The endpoints of
these subintervals are denoted x0i ;x

1
i ; . . . ; xNi

i where xi ¼ x0i < x1i < � � �
< xki < � � � < xNi

i ¼ �xi. In this notation the kth interval is ½xk�1i ; xki �. A
smooth convex underestimator of fðxÞ over x is defined by

/ðxÞ :¼ fðxÞ � qðxÞ;
where

qðxÞ :¼
Xn

i¼1
qki ðxiÞ for xi 2 ½xk�1i ; xki �; ð1Þ

qki ðxiÞ :¼ aki ðxi � xk�1i Þðxki � xiÞ þ bk
i xi þ cki : ð2Þ

In each interval ½xk�1i ; xki �; aki P 0 is chosen such that r2/ðxÞ, the Hessian
matrix of /ðxÞ, is positive semidefinite for all members of the set
fx 2 x : xi 2 ½xk�1i ; xki �g. qki ðxiÞ is the quadratic function associated with
variable i in interval k. The function qðxÞ is a piecewise quadratic function
constructed from the functions qki ðxiÞ.
The continuity and smoothness properties of qðxÞ are produced in a

spline-like manner. For qðxÞ to be smooth the qki functions and their gradi-
ents must match at the endpoints xki . In addition, we require that qðxÞ ¼ 0
at the vertices of the hyperrectangle x. To satisfy these requirements, the
following conditions are imposed for all i ¼ 1; . . . ; n:

q1i ðx0i Þ ¼ 0; ð3Þ

qki ðxki Þ ¼ qkþ1i ðxki Þ for all k ¼ 1; . . . ;Ni � 1; ð4Þ

qNi

i ðx
Ni

i Þ ¼ 0; ð5Þ

dqki
dxi

�
�
�
�
xki

¼ dqkþ1i

dxi

�
�
�
�
xki

for all k ¼ 1; . . . ;Ni � 1: ð6Þ

Expanding these equations, for each i ¼ 1; . . . ; n, one obtains the following
system of equations:
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b1
i x

0
i þ c1i ¼ 0;

bk
i x

k
i þ cki ¼ bkþ1

i xki þ ckþ1i 8k ¼ 1; . . . ;Ni � 1;

bNi

i xNi

i þ cNi

i ¼ 0;

�aki ðxki � xk�1i Þ þ bk
i ¼ akþ1i ðxkþ1i � xki Þ þ bkþ1

i 8k ¼ 1; . . . ;Ni � 1;

which can be represented as,

�x0i �1
x1i �x1i 1 �1

. .
. . .

. . .
. . .

.

xki �xki 1 �1
. .

. . .
. . .

. . .
.

xNi

i 1
�1 1

�1 1
. .

. . .
.

�1 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

b1
i

b2
i

..

.

bk
i

..

.

bNi

i

c1i
c2i
..
.

cNi

i

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

0
0

..

.

0

..

.

0
s1
s2
..
.

sNi�1
i

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

where ski ¼ �aki ðxki � xk�1i Þ � akþ1i ðxkþ1i � xki Þ. As the solution one obtains

b1
i ¼

XNi�1

k¼1
ski ðxki � xNi

i Þ
 !� 

xNi

i � x0i

!

; ð7Þ

bk
i ¼ b1

i þ
Xk�1

j¼1
sji for all k ¼ 2; . . . ;Ni; ð8Þ

cki ¼ �b1
i x

0
i þ

Xk�1

j¼1
sjix

j
i for all k ¼ 1; . . . ;Ni: ð9Þ

3. Geometric Interpretation

The construction of the convex underestimator for a nonconvex function

fðxÞ ¼ �2xþ 10x2 � 3x3 � 5x4

over the domain x 2 ½0; 1� is illustrated in Figures 1 and 2. Figure 2 shows
the nonconvex function fðxÞ along with underestimators of fðxÞ. A convex
underestimator defined using the classical aBB approach requires the a value
to be large enough to cancel the negative curvature at all points in the
domain. Noting that the second derivative, f00ðxÞ ¼ 20� 18x� 60x2, is a
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monotonically decreasing function of x, the most negative curvature occurs
at x ¼ 1, hence the a parameter is defined by f00ð1Þ using the formula,

a ¼ � 1

2
f 00ð1Þ ¼ 29:

Figure 1. Geometric interpretation of conditions (A) q1ðx0Þ ¼ 0, (B) q1ðx1Þ ¼ q2ðx1Þ and

dq1

dx

�
�
x1
¼ dq2

dx

�
�
x1
, (C) q2ðx2Þ ¼ q3ðx2Þ and dq2

dx

�
�
x2
¼ dq3

dx

�
�
x2

and (D) q3ðx3Þ ¼ 0. aBB underestimator

(-�-), aBB underestimators over partial domains ð��Þ, piecewise underestimator (�).

Figure 2. fðxÞ and convex underestimators: aBB (-�-), aBB over partial domains ð��Þ, piecewise
underestimator (–).
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The classical aBB underestimator,

/ðxÞ ¼ fðxÞ � 29ð1� xÞðx� 0Þ

is shown in Figure 2. This underestimator can be improved by partitioning
the domain into three subintervals of equal length, ½x0;x1�; ½x1; x2�; ½x2;x3�,
where x0 ¼ 0;x1 ¼ 1

3 ; x
2 ¼ 2

3 and x3 ¼ 1 As f 00ðxÞ is a monotonically
decreasing function, the a values in each interval are derived from the
upper bounds on the respective intervals as follows,

a1 ¼ max 0;� 1
2 f
00ðx1Þ

� �
¼ 0;

a2 ¼ max 0;� 1
2 f
00ðx2Þ

� �
¼ 9

1

3
;

a3 ¼ max 0;� 1
2 f
00ðx3Þ

� �
¼ 29:

The classical aBB perturbation functions and underestimators over each
of the smaller intervals are depicted in Figures 1 and 2 (dash line). A con-
vex underestimator over the whole interval is constructed by adding a lin-
ear function bixþ ci to the aBB perturbations over each of the
subintervals i ¼ 1; . . . ; 3. The parameters bi and ci, defining these linear
functions are chosen so that the overall perturbation function is smooth
and is zero at the end points. These values are calculated using the Equa-
tions 7–9. The piecewise quadratic perturbation function, shown in Fig-
ure 1 (solid line) is defined as follows:

qðxÞ ¼ q1ðxÞ for x 2 ½0; 13�;
qðxÞ ¼ q2ðxÞ for x 2 ½13 ; 23�;
qðxÞ ¼ q3ðxÞ for x 2 ½23 ; 1�;
q1ðxÞ ¼ 6:6667x;

q2ðxÞ ¼ 9:3333ð0:6667� xÞðx� 0:3333Þ þ 3:2221xþ 1:0370;

q3ðxÞ ¼ 29ð1:0� xÞðx� 0:667Þ � 9:5552xþ 9:5551:

In Figure 1 the endpoints of the quadratic pieces are labelled A, B, C
and D. At the endpoints A and D, the conditions q1ðx0Þ ¼ 0 and
q3ðx3Þ ¼ 0, respectively, are enforced. Two conditions are enforced at each
of the interior points B and C to enforce the smoothness of the piecewise
quadratic function. At point B, q1ðx1Þ ¼ q2ðx1Þ and dq1

dx

�
�
�
x1
¼ dq2

dx

�
�
�
x1

apply,

and at point C, q2ðx2Þ ¼ q3ðx2Þ and dq2

dx

�
�
�
x2
¼ dq3

dx

�
�
�
x2

apply. The convex un-

derestimator, which is the difference, fðxÞ � qðxÞ, is shown in Figure 2

(solid line).
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4. Properties of the Underestimator

In this section we prove the smoothness, underestimation, and convexity
properties of /ðxÞ. Smoothness is shown in Proposition 4.1.

PROPOSITION 4.1. /ðxÞ : x 3 x! R is a continously differentiable
function.

Proof. The continuity of qðxÞ is guaranteed by condition (4), and the con-
tinuity of dqðxÞ

dx
is guaranteed by condition (6). The smoothness of /ðxÞ fol-

lows from the smoothness of fðxÞ and qðxÞ. (

Next we prove that /ðxÞ is an underestimator of fðxÞ. Lemma 4.2 shows
that qðxÞ is a concave function. This result is used in Proposition 4.3 to
prove that /ðxÞ is a underestimator of fðxÞ.

LEMMA 4.2. If aki P 0 for all k ¼ 1; . . . ;Ni � 1; and i ¼ 1; . . . ; n; then qðxÞ
is concave over x.

Proof. By definition qðxÞ :¼
Pn

i¼1 qiðxiÞ. We will prove the concavity of
qðxÞ by first proving that each qiðxiÞ is concave. On the interval
ðxk�1i ; xki Þ; qiðxiÞ is C2 continuous and its second derivative is negative,
therefore qiðxiÞ is concave on ðxk�1i ;xki Þ. As qki ðxiÞ is continuous it is also
concave on ½xk�1;xk�. The derivative of qiðxiÞ is a continuous function as

dqki
dxi

�
�
�
xki

¼ dqkþ1i ðxki Þ
dxi

�
�
�
xki

. Consequently, qi is a continuous function with an

decreasing derivative on ½xi; �xi� and is thus concave. A sum of concave
functions is concave, hence qðxÞ is concave on x. (

PROPOSITION 4.3. /ðxÞ is an underestimator of f(x), that is /ðxÞO fðxÞ
for all x 2 x.

Proof. By the convexity of �qðxÞ and Jensen’s Inequality (Hiriart-Urruty
and Lemaréchal, 1993),

�qðk1x1 þ � � � þ knþ1x
nþ1ÞO � k1qðx1Þ � � � � � knþ1qðxnþ1Þ;

when k1 þ � � � þ knþ1 ¼ 1 and k1 P 0; . . . ; knþ1 P 0. Carathéodory’s Theo-
rem (Rockafeller, 1970, Theorem 17.1) says any x 2 x can be written as a
convex combination of nþ 1 vertex points, x ¼ k1x1 þ � � � þ knþ1xnþ1.
From conditions (3) and (5), �qðxÞ ¼ 0 for all vertices of the domain x.
Therefore,

�qðxÞO � k1qðx1Þ � � � � � knþ1qðxnþ1ÞO 0;

and fðxÞ � qðxÞO fðxÞ, as required. (
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Finally we show that /ðxÞ is convex, using the argument of gradient
monotonicity. Monotonicity is defined as follows.

DEFINITION (Hiriart-Urruty and Lemaréchal, 1993) Let C � R
n be con-

vex. A mapping F : C! R
n is said to be monotone on C when for all x

and x0 in C, hFðxÞ � Fðx0Þ;x� x0iP 0 whenever x 6¼ x0:
Proof of the convexity of /ðxÞ is based on a generalization of the one

dimensional argument used in Lemma 4.2. The following is Theorem
IV.4.1.4 from Hiriart-Urruty and Lemaréchal, (1993).

THEOREM 4.4. Let f be a function differentiable on an open set X � R
n,

and let C be a convex subset of X. Then, f is convex on C if and only if its
gradient rf is monotone on C.
Now we can prove the convexity of /ðxÞ using Theorem 4.4.

PROPOSITION 4.5. Let f : R � x! R be a twice continuously differentia-
ble function over x. Let /ðxÞ :¼ fðxÞ � qðxÞ where qðxÞ is defined by (3)–(6).
If r2ðfðxÞ �

Pn

i¼1
qki ðxÞÞP 0 for all x 2 I :¼ ½xk1�11 ; xk11 � � � � � � ½xkn�1n ; xknn �

where xkii 2 fx1i ; . . . ;xNi�1
i g; i ¼ 1; . . . ; n; then /ðxÞ is a convex function on x.

Proof. Consider a region, I, over which the piecewise C2-continuous func-
tion qðxÞ is C2-continuous. Let I :¼ ½xk1�11 ;xk11 � � � � � � ½xkn�1n ;xknn �. As

r2ðfðxÞ �
Pn

i¼1
qki ðxÞÞ is positive semidefinite on I, /ðxÞ is convex on I. From

Theorem 4.4 hr/ðxÞ � r/ðx0Þ;x� x0iP 0 whenever x 6¼ x0; x 2 I;x0 2 I.
Now, consider the case when x 2 I and x0 2 I0 where I and I0 are adjacent
regions of C2 continuity, that is intI \ intI0 ¼ ; and I \ I0 6¼ ;. Let x 2 I,
x0 2 I0 and x� be such that x� 2 I \ I0 is a point on the line between x and
x0. From the convexity of /ðxÞ on I0,

hr/ðx�Þ � r/ðx0Þ; x� � x0iP 0;

and from the convexity of /ðxÞ on I,

hr/ðxÞ � r/ðx�Þ;x� x�iP 0;

therefore,

hr/ðxÞ � r/ðx�Þ; x� x�i þ hr/ðx�Þ � r/ðx0Þ;x� � x0i
¼ hr/ðxÞ � r/ðx0Þ;x� x0iP 0:

It follows that

hr/ðxÞ � r/ðx0Þ;x� x0iP 0:

for any x and x0 in x and that / is convex in x.

SPLINE aBB 229



Illustration 1: Consider the Lennard-Jones potential energy function,

fðxÞ ¼ 1

x12
� 2

x6

in the interval ½x; �x� = [0.85, 2.00]. The first term of this function is a con-
vex function and dominates when x is small, while the second term is a con-
cave function which dominates when x is large. The minimum eigenvalue of
this function in an interval ½x; �x� can be calculated explicitly as follows:

min f00 ¼
156
�x14
� 84

�x8
if �x 1:21707,

�7:47810 if ½x; �x� 3 1:21707,
156
x14
� 84

x8
if �xP 1:21707:

8
<

:

The classical aBB underestimator for this function and interval is
fðxÞ � 7:47810

2 ð�x� xÞðx� xÞ: Bisecting the domain and applying Equations
7–9 we obtain a convex underestimator defined by the parameters in
Table l. Partitioning the domain into 16 equal sized subintervals, and
applying Equations 7–9 we obtain the convex underestimator /ðxÞ with
the parameters defining qðxÞ in Table 2. The potential energy function, the
classical aBB underestimator, and the /ðxÞ underestimators are shown in
Figure 3. In this figure the a spline underestimator based on 2 subregions
is denoted, /ð2Þ; while that based on 16 subregions is denoted, /ð16Þ:

Illustration 2: As an illustration of the underestimation technique on a
function with a domain in R

2, consider the Six-Hump Camelback function
(Dixon and Szegö, 1975),

fðx1; x2Þ :¼ 4x21 � 2:1x41 þ
1

3
x61 þ x1x2 � 4x22 þ 4x42

over the domain ðx1;x2Þ 2 ½0; 1� � ½0; 1�; represented in Figure 4. The
Hessian matrix of this function is

r2fðx1; x2Þ ¼ 8� 25:2x21 þ 10x41 1
1 �8þ 48x22

� �

:

Using the INTPAKX interval arithmetic software (Krämer and Geulig,
2001), an interval Hessian matrix H½x1;�x1��½x2;�x2� over this domain, is com-
puted as

Table 1. Parameters for two subinterval perturbation for Lennard-Jones function

k xk min f 00 ak bk ck

0 0.850

1 1.425 )7.47810 3.73905 1.62764 )1.38349
2 2.000 )3.84462 1.92231 )1.62764 3.25528
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H½0;1��½0;1� ¼ ½�14:03594; 3:82500� ½1:00000; 1:00000�
½1:00000; 1:00000� ½�8:00000; 40:00000�

� �

:

Adjiman et al. (1998b) extended the Gerschgorin Theorem concerning the
eigenvalues of real matrices to treat interval matrices. The a parameters for

Table 2. Parameters for 16 subinterval perturbation of Lennard-Jones function

k xk min f 00 ak bk ck

0 0.850000

1 0.921875 326.18127 0.00000 1.78326 )1.51577
2 0.993750 81.99112 0.00000 1.78326 )1.51577
3 1.065625 13.55346 0.00000 1.78326 )1.51577
4 1.137500 )4.27629 2.13815 1.62958 )1.35200
5 1.209375 )7.46047 3.73024 1.20779 )0.87222
6 1.281250 )7.47810 3.73905 0.67093 )0.22296
7 1.353125 )6.71098 3.35549 0.16101 0.43038

8 1.425000 )5.21291 2.60645 )0.26750 1.01021

9 1.496875 )3.84462 1.92231 )0.59301 1.47405

10 1.568750 )2.78248 1.39124 )0.83117 1.83055

11 1.640625 )2.00473 1.00236 )1.00321 2.10044

12 1.712500 )1.44791 0.72395 )1.12729 2.30401

13 1.784375 )1.05201 0.52600 )1.21713 2.45786

14 1.856250 )0.77029 0.38515 )1.28262 2.57472

15 1.928125 )0.56887 0.28443 )1.33074 2.66405

16 2.000000 )0.42385 0.21192 )1.36642 2.73284

Figure 3. Lennard-Jones potential function and underestimators.
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the classical aBB underestimator are calculated using the formula (Adjiman
et al., 1998b)

aiP� 0:5min 0;Hx
ii �

X

j6¼i
maxfjHx

ijj; jH
x
ijj

( )

:

The classical aBB underestimator is constructed using the resulting values
a1 ¼ 8:7875 and a2 ¼ 4:5.
The aBB convex underestimator can be refined by partitioning the

domain into four equal areas by bisection along the x1 and x2 axis. The
interval Hessians for each of the four regions are

H½0;0:5��½0;0:5� ¼
½1:70000; 8:62500� ½1:00000; 1:00000�
½1:00000; 1:00000� ½�8:0000; 4:00000�

" #

;

H½0:5;1:0��½0;0:5� ¼
½�16:57500; 11:7000� ½1:00000; 1:00000�
½1:00000; 1:00000� ½�8:00000; 4:00000�

" #

;

H½0;0:5��½0:5;1� ¼
½1:70000; 8:62500� ½1:00000; 1:00000�
½1:00000; 1:00000� ½4:00000; 40:00000�

" #

;

Figure 4. Six-Hump Camelback function.
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H½0:5;1��½0:5;1� ¼
½�16:57500; 11:70000� ½1:00000; 1:00000�
½1:00000; 1:00000� ½4:00000; 40:00000�

� �

:

Sufficiently large a values for each subregion may be calculated by apply-
ing the formula of Adjiman et al. (1998b) to each of these interval Hes-
sians. The partitioning of the domain into four subregions is illustrated in
Figure 5(b). The a values calculated by the interval Gerschgorin formula
to be large enough to convexify f in the respective subregions are displayed
in this figure.
The underestimation function may be further refined through bisection

of the interval x1 2 ½0:5; 1:0� resulting in a partition with six subregions.
Figure 5(c) illustrates this partitioning scheme and summarizes the a values
calculated using the interval Gerschgorin formula. In Figure 5(d) a further

Figure 5. Six-Hump Camelback function a over subregions.
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refinement is represented. The parameters for the piecewise C2 continuous
underestimator for each of these partitioning schemes, calculated using
Equations 7–9, are summarized in Table 3.
The negative of the a-spline perturbation function, �qðxÞ, over 4, 6, and

9 domains is plotted in Figure 6(a)–(c). The classical aBB perturbation
function is shown to significantly overestimate the a-spline functions in
each of these figures.

5. Nonconcave Perturbation

Consider a function fðxÞ, such as the Lennard-Jones potential function in
which the function is convex in one subdomain and concave in another. In
the a spline approach /ðxÞ can be convex even if the a values are negative
in the regions in which fðxÞ is strictly convex. In Proposition 4.3 the under-
estimation property is guaranteed by the concavity of qðxÞ. The concavity
of qðxÞ is, in turn, a result of the non-negativity of the a values. In this sec-
tion we discuss how the underestimation property of /ðxÞ can be main-
tained when some a values are negative.
The underestimation property, /ðxÞOfðxÞ for all x 2 x, is ensured by the

following condition:

min
x2x

qðxÞP0:

Instead of solving minimization problems, the key idea is to adjust the
a’s to prevent the creation of local minima at any nonvertex point in x by
prohibiting the occurrence of stationary points on convex regions of the
perturbation function. This is illustrated in Figure 7. In Figure 7(a) a con-

Table 3. Parameters defining the piecewise aBB underestimators for the Six-Hump Camelback function

with 4, 6 and 9 subregions

k xk
1 ak

1 bk
1 ck

1 xk
2 ak

2 bk
2 ck

2

Four subregions

0 0.0 0.0

1 0.5 0.0000 1.125 0.000 0.5 4.5000 1.94688 0.00000

2 1.0 8.7875 )1.125 1.125 1.0 0.0000 )1.94688 1.94688

Six subregions

0 0.00 0.0

1 0.50 0.00000 1.08394 0.00000 0.5 4.50000 1.94688 0.00000

2 0.75 3.27500 0.26519 0.40937 1.0 0.00000 )1.94688 1.94688

3 1.00 7.51797 )2.43306 2.43306

Nine subregions

0 0.00 0.0

1 0.50 0.00000 1.08394 0.00000 0.25 4.50000 1.78125 0.00000

2 0.75 3.27500 0.26519 0.40937 0.5 3.00000 )0.09375 0.46875

3 1.00 7.51797 )2.43306 2.43306 1.0 0.00000 )0.84375 0.84375
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cave perturbation function is depicted. The nonnegativity of this function
follows from its concavity. In Figure 7(b) a perturbation function is shown
which is convex over the domain marked with a bold line.
The point x� is a stationary point of q in this convex region and we note

that qðx�Þ is negative. In Figure 7(c) the perturbation function is again con-
vex over the marked region but there is no stationary point in this region.
This function is nonnegative over the entire domain ½x;x�. Using this idea,
a tight convex underestimator is derived by starting with qðxÞ, with non-
negative a values as defined in Section 2, and making the zero a’s negative
one at a time, while maintaining the convexity of /ðxÞ and avoiding the
generation of stationary points on the convex portions of q.
The remainder of this section is structured as follows. First, the depen-

dence of the parameters b on the a parameters is derived. Next, stationary
conditions for qðxÞ are derived and used to define conditions on the a’s
which guarantee the absence of stationary points on the convex portions of
qðxÞ. This leads to a method that is effective when the convex regions lie at
extrema of the domain. Finally we consider a technique for generating
tight convex relaxations for functions which have convex regions which are
not at the domain extrema.

Figure 6. Six-Hump Camelback function: aBB and piecewise aBB perturbations with 4, 6 and 9

subregions.

Figure 7. (a) Concave, (b) nonconcave, and (c) nonnegative nonconcave perturbation functions.
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For the rest of this section we will assume that f : x! R is a univariate
function, x ¼ ½x;x� � R. The separable structure of the a spline function
allows the techniques developed here to be applied to the multivariate case.

5.1. FUNCTIONAL DEPENDENCE OF b ON a

Note that the b and c parameters defining qðxÞ are functions of the a’s and
the endpoints, x0; . . . ;xN. The following formula, derived from Equations
7–9, is an expression for bk in terms of a1; . . . ; aN

bk ¼ 1

xN � x0

Xk�1

j¼1
ð�ajðxj � xj�1Þðxj � x0Þ � ajþ1ðxjþ1 � xjÞðxj � x0ÞÞ

þ 1

xN � x0

XN�1

j¼k
ð�ajðxj � xj�1Þðxj � xNÞ � ajþ1ðxjþ1 � xjÞðxj � xNÞÞ:

Suppose that having calculated b 2 R
N for some given a 2 R

N, we wish
to modify some element aj. Below, we derive formulae that may be used to
update the b’s following such an a update. Under the substitution aj ! ~aj

the elements ~b1; . . . ; ~bN that satisfy Equations 7–9 may be expressed in
terms of b1; . . . ;bN; aj and ~aj using the update formulae,

~bk�bk¼ 1

xN�x0
ðaj� ~ajÞðxj�xj�1Þðxj�1�x0Þ

þ 1

xN�x0
ðaj� ~ajÞðxj�xj�1Þðxj�x0Þ

¼ 1

xN�x0
ðaj� ~ajÞðxj�xj�1Þðxj�1þxj�2x0Þ if j< k; ð10Þ

~bk�bk¼ 1

xN�x0
ðaj� ~ajÞðxj�xj�1Þðxj�1�x0Þ

þ 1

xN�x0
ðaj� ~ajÞðxj�xj�1Þðxj�xNÞ

¼ 1

xN�x0
ðaj� ~ajÞðxj�xj�1Þðxj�1þxj�x0�xNÞ if j¼ k; ð11Þ

~bk�bk¼ 1

xN�x0
ðaj� ~ajÞðxj�xj�1Þðxj�1�xNÞ

þ 1

xN�x0
ðaj� ~ajÞðxj�xj�1Þðxj�xNÞ

¼ 1

xN�x0
ðaj� ~ajÞðxj�xj�1Þðxj�1þxj�2xNÞ if j> k: ð12Þ

5.2. PERTURBATION FUNCTION STATIONARY POINTS

A stationary point x� of the function q : R! R is one that satisfies

dq

dx

�
�
�
�
x�
¼ 0

or
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akðxk þ xk�1 � 2x�Þ þ bk ¼ 0

in some interval, x� 2 ½xk�1; xk�. From this we see that x� ¼ 1
2 ðxk þ xk�1þ

bk=akÞ if xk�1Ox�Oxk for some k 2 f1; . . . ;Ng. It follows that an interval
k contains no stationary point if either 1

2 ðxk þ xk�1 þ bk=akÞ > xk or
1
2 ðxk þ xk�1 þ bk=akÞ < xk�1.
The following three Lemmas 5.1–5.3, provide conditions on aj that guar-

antee the absence of a stationary point in an interval ½xk�1; xk�. There are
three cases, j < k; j ¼ k, and j > k, which are treated separately in the
respective lemmas.

LEMMA 5.1. Consider two intervals ½xj�1;xj� and ½xk�1; xk� where j < k.
Let the sequence of a values defining qkðxÞ be

fa1; . . . ; aj; . . . ; ak; . . . ; aN�1g;
where ak < 0. Let ~qkðxÞ be the function defined by the sequence of a values

fa1; . . . ; ~aj; . . . ; ak; . . . ; aN�1g;
where ~aj < 0. There exists no stationary point of ~qkðxÞ on the interval
½xk�1;xk� if either of the following bounds on ~aj hold:

~aj >
ðxN � x0Þð�akðxk � xk�1Þ þ bkÞ þ ajðxj � xj�1Þðxj�1 þ xj � 2x0Þ

ðxj � xj�1Þðxj þ xj�1 � 2x0Þ
or

~aj <
ðxN � x0Þðakðxk � xk�1Þ þ bkÞ þ ajðxj � xj�1Þðxj�1 þ xj � 2x0Þ

ðxj � xj�1Þðxj þ xj�1 � 2x0Þ :

Proof. Lower bound on ~aj: Let x� be a stationary point of ~qkðxÞ. Suppose
x� ¼ 1

2 ðxk þ xk�1 þ ~bk

akÞ > xk then

�xk þ xk�1 þ
~bk

ak
> 0:

ak is strictly negative, therefore

akðxk � xk�1Þ � ~bk > 0:

Using (10) to express ~bk as a function of ~aj we get,

akðxk � xk�1Þ � bk � 1

xN � x0
ðaj � ~ajÞðxj � xj�1Þðxj�1 þ xj � 2x0Þ > 0

:

As ðxN � x0Þ; ðxj � xj�1Þ, and ðxj þ xj�1 � 2x0Þ are strictly positive we can
derive an upper bound on ~aj

~aj >
ðxN�x0Þð�akðxk�xk�1ÞþbkÞþ a jðxj�xj�1Þðxj�1þxj� 2x0Þ

ðxj�xj�1Þðxjþxj�1� 2x0Þ :
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Upper bound on ~aj: suppose x� ¼ 1
2 ðxk þ xk�1 þ ~bk

akÞ < xk�1 then

xk � xk�1 þ
~bk

ak
< 0:

ak is strictly negative, therefore

akðxk � xk�1Þ þ ~bk > 0:

Using (10) to express ~bk as a function of ~a j we get,

akðxk � xk�1Þ þ bk þ 1

xN � x0
ðaj � ~a jÞðxj � xj�1Þðxj�1 þ xj � 2x0Þ > 0:

As ðxN � x0Þ; ðxj � xj�1Þ, and ðxj þ xj�1 � 2x0Þ are strictly positive we can
derive an upper bound on ~aj

~aj <
ðxN � x0Þðakðxk � xk�1Þ þ bkÞ þ ajðxj � xj�1Þðxj�1 þ xj � 2x0Þ

ðxj � xj�1Þðxj þ xj�1 � 2x0Þ
LEMMA 5.2. Consider an interval ½xk�1;xk�. Let fa1; a2; . . . ; aN�1g be the
sequence of a values determining qkðxÞ. Let ~qkðxÞ be the function defined by
the sequence of a values fa1; . . . ; ak�1; ~ak; akþ1; . . . ; aN�1g where ~ak < 0. A
stationary point of ~qðxÞ does not exist on the interval ½xk�1; xk� if either of
the following conditions hold:

~ak >
f

ðxk � xk�1Þðxk þ xk�1 � 2x0Þ if fO0;

~ak >
f

ðxk � xk�1Þðxk þ xk�1 � 2xNÞ if f > 0; ð13Þ

where f ¼ bkðxN � x0Þ þ akðxk � xk�1Þðxk�1 þ xk � x0 � xNÞ:

Proof. x� > xk: As ~qkðxÞ is a strictly convex quadratic function, it can have

at most one stationary point x�. Suppose x� ¼ 1
2 ðxk þ xk�1 þ ~bk

akÞ > xk then

�xk þ xk�1 þ
~bk

~ak
> 0:

~ak is strictly negative, therefore

~akðxk � xk�1Þ � ~bk > 0:

Using (11) to express ~bk as a function of ~ak we get,

~akðxk � xk�1Þ � bk � 1

xN � x0
ðak � ~akÞðxk � xk�1Þ

� ðxk�1 þ xk � x0 � xNÞ > 0:

As ðxN � x0Þ; ðxk � xk�1Þ, and ðxk þ xk�1 � 2x0Þ are strictly positive we can
derive a lower bound on ~ak
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~ak >
ðxN � x0ÞðbkÞ þ akðxk � xk�1Þðxk�1 þ xk � x0 � xNÞ

ðxk � xk�1Þðxk þ xk�1 � 2x0Þ :

x� < xk�1: Suppose x� ¼ 1
2 ðxk þ xk�1 þ ~bk

~akÞ < xk�1 then

xk � xk�1 þ
~bk

~ak
< 0:

~ak is strictly negative, therefore

~akðxk � xk�1Þ þ ~bk > 0:

Using (11) to express ~bk as a function of ~ak we get,

~akðxk � xk�1Þ þ bk þ 1

xN � x0
ðak � ~akÞðxk � xk�1Þ

� ðxk�1 þ xk � x0 � xNÞ > 0:

As ðxN � x0Þ; ðxk � xk�1Þ, and ð2xN � xk � xk�1Þ are strictly positive we
can derive a lower bound on ~aj

~ak >
�ðxN � x0Þbk � akðxk � xk�1Þðxk�1 þ xk � x0 � xNÞ

ðxk � xk�1Þð2xN � xk � xk�1Þ : (

LEMMA 5.3. Consider two intervals ½xj�1;xj� and ½xk;xk�1� where j > k.
Let ak < 0, and fa1; . . . ; ak; . . . ; aj; . . . ; aN�1g be the sequence of a values
determining qkðxÞ. Let ~qkðxÞ be the function defined by the sequence of a val-
ues fa1; . . . ; ak; . . . ; ~aj; . . . ; aN�1g where ~aj < 0. A stationary point of ~qkðxÞ
does not exist on the interval ½xk�1; xk� if either of the following bounds on ~aj

hold:

~aj >
ðxN�x0Þðakðxk�xk�1ÞþbkÞþ a jðxj�xj�1Þðxj�1þxj� 2xNÞ

ðxj�xj�1Þðxjþxj�1� 2xNÞ ;

~a j <�ðx
N�x0Þðakðxk�xk�1Þ�bkÞþ a jðxj�xj�1Þðxj�1þxj� 2xNÞ

ðxj�xj�1Þðxjþxj�1� 2xNÞ :

Proof. Lower bound on ~aj: Suppose x� ¼ 1
2 ðxk þ xk�1 þ ~bk

akÞ < xk�1 then

xk � xk�1 þ
~bk

ak
< 0:

ak is strictly negative, therefore

ak xk � xk�1
� �

þ ~bk > 0:

Using (12) to express ~bk as a function of ~aj we get,
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akðxk � xk�1Þ þ bk þ 1

xN � x0
ðaj � ~ajÞðxj � xj�1Þðxj�1 þ xj � 2xNÞ > 0:

As ðxN � x0Þ; ðxj � xj�1Þ, and ð2xN � xj � xj�1Þ are strictly positive we can
derive a lower bound on ~aj

~aj >
ðxN � x0Þðakðxk � xk�1Þ þ bkÞ þ ajðxj � xj�1Þðxj�1 þ xj � 2xNÞ

ðxj � xj�1Þðxj þ xj�1 � 2xNÞ :

Upper bound on ~aj: As ~qkðxÞ is a strictly concave quadratic function, it can

have at most one stationary point x�. Suppose x� ¼ 1
2 ðxk þ xk�1 þ ~bk

akÞ > xk

then

�xk þ xk�1 þ
~bk

ak
> 0:

ak is strictly negative, therefore

akðxk � xk�1Þ � ~bk > 0:

Using (12) to express ~bk as a function of ~aj we get,

akðxk � xk�1Þ � bk � 1

xN � x0
ðaj � ~ajÞðxj � xj�1Þðxj�1 þ xj � 2xNÞ > 0:

As ðxN � x0Þ; ðxj � xj�1Þ, and ð2xN � xj � xj�1Þ are strictly positive we can
derive a upper bound on ~aj

~aj < �ðx
N � x0Þðakðxk � xk�1Þ � bkÞ þ ajðxj � xj�1Þðxj�1 þ xj � 2xNÞ

ðxj � xj�1Þðxj þ xj�1 � 2xNÞ :

(

5.3. POSITIVITY OF THE PERTURBATION FUNCTION

When qðxÞ is concave on a set of intervals and is guaranteed to have no
stationary point on the remainder of the intervals, qðxÞ is monotonically
nondecreasing between x0 and a global maximum x� and monotonically
nonincreasing between x� and xN. This assertion is proven in Lemma 5.4
and used in Proposition 5.5 to show the positivity of qðxÞ under the afore-
mentioned conditions.

LEMMA 5.4. Let qðxÞ be defined by (7)–(9) where the a values are such
that for each k 2 f1; . . . ;N� 1g; ak 	 0 or qkðxÞ has no stationary point in

½xk�1;xk�. If x0 2 ½xk; xkþ1� and dq
dx

�
�
xk

O0 then qðxÞOqðx0Þ for all x 2 ½x0; xN�.
If x0 2 ½xk�1; xk� and dq

dx

�
�
xk
	 0 then qðxÞOqðx0Þ for all x 2 ½x0; x0�.

Proof. xPxk: Let xPx0 be in the interval ½xk; xkþ1�. If akþ1 is positive, dqkþ1

dx

is negative for all x 2 ½xk; xkþ1�, and qkþ1ðxÞO qkþ1ðx0Þ for all x 2 ½xk;xkþ1�.
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If akþ1 is strictly negative, dqkþ1

dx < 0 for all x 2 ½xk; xkþ1�by assumption,
therefore qkþ1ðxÞ < qkþ1ðx0Þ for all x 2 ½xk; xkþ1�. In either case dqkþ1

dx

�
�
�
xkþ1

O0

and qkþ1ðxkþ1ÞOqkþ1ðxkÞ. From the continuity properties of qðxÞ,
qkðxkÞ ¼ qkþ1ðxkÞ and dqk

dx

�
�
�
xk
¼ dqkþ1

dx

�
�
�
xk
. Therefore if dq

dx

�
�
�
xk

O0 then dq
dx

�
�
�
xkþ1

O0

and by induction qðxÞOqðx0Þ for x 2 ½x0; xN�.
xOxk: Let xOx0 be in the interval ½xk�1; xk�. If ak is positive, dq

k

dx
is posi-

tive for all x 2 ½xk�1;xk�, and qkðxÞOqkðx0Þ for all x 2 ½xk�1;x0�. If ak is

strictly negative, dqk

dx
> 0 for all x 2 ½xk�1; xk� by assumption, therefore

qkðxÞOqkðx0Þ for all x 2 ½xk�1; x0�. In either case dq
dx

�
�
�
xk�1

P0 and

qkðxk�1ÞOqkðx0Þ. Therefore if dq
dx

�
�
�
xk

P0 then dq
dx

�
�
�
xk�1

P0 and by induction

qðxÞOqðx0Þ for x 2 ½x0; x0�.

PROPOSITION 5.5. Let qðxÞ be defined by Equations 7–9 where the a’s
are such that qðxÞ cannot have a stationary point in ½xk�1;xk� unless akP0.
Under these assumptions qðxÞP0 for all x 2 ½x0; xN�.

Proof. From qðx0Þ ¼ qðxNÞ ¼ 0 and the Mean Value Theorem dq
dx

�
�
�
x�
¼ 0 for

some x� 2 ðx0;xNÞ. Let the stationary point x� lie in the interval ½xk�1;xk�.
As qkðxÞ is assumed to have no stationary points if ak is strictly negative,
ak must be positive, therefore qðxÞ is concave over the interval ½xk�1;xk�
and x� is a global maximum of qðxÞ on this interval. Furthermore,
dqk

dx

�
�
�
xk�1

P0 and dqk

dx

�
�
�
xk

O0. From Lemma 5.4 qðxÞOqðx0Þ for xPx0Pxk and

qðxÞOqðx0Þ for xOx0Oxk�1. So qðxÞ is nondecreasing on ½x0;x��, and non-
increasing on ½x�;xN� while qðx0Þ ¼ qðxNÞ ¼ 0. Therefore qðxÞP0 for all
x 2 ½x0;xN�.

5.4. ILLUSTRATIONS OF THE NONCONCAVE PERTURBATION FUNCTION

Illustration 3: This illustration demonstrates the strengthening of an under-
estimation function through the use of negative a values. Consider the
cubic funtion fðxÞ ¼ x3 on the domain x 2 ½�1; 1�. The second derivative

of this function is d
2
f

dx2
¼ 6x. In any interval, ½xk�1;xk�, the second derivative

lies in the interval ½6xk�1; 6xk�. Let the domain be partitioned into eight

equal intervals defined by the end points,

fx0; . . . ; x8g ¼ f�1:0;�0:75;�0:5;�0:25; 0:0; 0:25; 0:5; 0:75; 1:0g:
A valid underestimation function can be derived by setting

ak ¼ 1

2
ðmaxf0;�6xk�1gÞ;

fa1; . . . ; a8g ¼ f3:0; 2:25; 1:5; 0:75; 0; 0; 0; 0g:
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The b and c vectors are calculated using (7)–(9). Now, we will improve the
underestimation by using negative a’s. a5 cannot be decreased as the lower

bound of d
2
f

dx2
is 0 in the interval ½x4;x5� ¼ ½0; 0:25�. The lower bound of d

2
f

dx2
in the interval ½x5;x6� ¼ ½0:25; 0:50� is 1.5, therefore the convexity of
fðxÞ � qðxÞ may be maintained if a6 is decreased to 1:5=2 ¼ �0:75. How-
ever, to ensure that no stationary points exist in ½x5; x6� conditon (13) is
enforced. First f is calculated:

f ¼ b6ðx8 � x0Þ þ a6ðx6 � x5Þðx5 þ x6 � x0 � x8Þ ¼ �1:406 < 0:

f is negative, so the following inequality applies:

~a6 >
f

ðx6 � x5Þðx6 þ x5 � 2x0Þ ¼ �2:045:

Setting a6 ¼ maxf�0:75;�3:282g ¼ �0:75, and recalculating b and c
using (7)–(9) an improved convex underestimation function is defined. In
the interval ½x6;x7� ¼ ½0:5; 0:75�, the lower bound of d

2
f

dx2
is 3.0, therefore a7

may be decreased to �1:50 without making qðxÞ convex. To ensure that no

stationary points exist in ½x6;x7� condition (13) is enforced. Now,
f ¼ b7ðx8 � x0Þ þ a7ðx7 � x6Þðx6 þ x7 � x0 � x8Þ ¼ �0:891 < 0 so the fol-
lowing inequality applies:

~a7 >
f

ðx7 � x6Þðx7 þ x6 � 2x0Þ ¼ �1:096:

We set a7 ¼ maxf�1:500;�1:096g ¼ �1:096 and recalculated the b’s and c’s.

In the interval ½x7; x8� ¼ ½0:75; 1:0�, the lower bound of d
2
f

dx2
is 4.5, therefore

the concavity of qðxÞ may be maintained even if a8 is decreased to �2.25.
To ensure that no stationary points exist in ½x7;x8� (13) is enforced. Now,
f ¼ b8ðx8 � x0Þ þ a8ðx8 � x7Þðx7 þ x8 � x0 � x8Þ ¼ 0 so the following
inequality applies:

~a8 >
f

ðx8 � x7Þðx8 þ x7 � 2x0Þ ¼ 0:

So a8 cannot be decreased and no further modification can be made.
Figure 8 illustrates the change in qðxÞ as a result of the modification of a6

and a7, and Figure 9 depicts the improvement in the underestimation func-
tion x3 � qðxÞ.

Illustration 1 continued: Here we consider the convex underestimation of
the Lennard-Jones potential energy function discussed in Illustration 1.
The parameters for the a-spline function are summarized in Table 4. A
negative a value has been assigned to two of the three regions in which the
second derivative is strictly positive. In Figure 10 the underestimator with
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Figure 8. Convex underestimation of x3 perturbation qðxÞ with (a) positive a’s, (b) a6 < 0, (c)

a6 < 0, a7 < 0.

Figure 9. Convex underestimation of x3:underestimator x3 � qðxÞ with (a) postitive a’s, (b)

a6 < 0, (c) a6 < 0, a7 < 0.
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negative a’s, marked as /�ðxÞ, is shown with the potential energy function
and /þðxÞ, the underestimator with negative a’s.
This underestimator can be further tightened by refining the partition,

particularly in the convex region.

Illustration 2 continued: Here we reconsider the underestimation of the
function in Illustration 2 using negative a parameters. Partitioning the

Table 4. Parameters defining qðxÞ with negative a’s for Lennard-Jones potential

k xk min f 00 ak bk ck

0 0.850000

1 0.921875 326.18127 0.00000 0.00000 0.00000

2 0.993750 81.99112 )7.37920 0.53038 )0.48894
3 1.065625 13.55346 )6.77673 1.54784 )1.50004
4 1.137500 )4.27629 2.13815 1.88124 )1.85532
5 1.209375 )7.46047 3.73024 1.45945 )1.37553
6 1.281250 )7.47810 3.73905 0.92259 )0.72627
7 1.353125 )6.71098 3.35549 0.41267 )0.07294
8 1.425000 )5.21291 2.60645 )0.01584 0.50689

9 1.496875 )3.84462 1.92230 )0.34135 0.97074

10 1.568750 )2.78248 1.39124 )0.57951 1.32724

11 1.640625 )2.00473 1.00236 )0.75155 1.59713

12 1.712500 )1.44791 0.72395 )0.87563 1.80069

13 1.784375 )1.05201 0.52600 )0.96547 1.95454

14 1.856250 )0.77029 0.38515 )1.03096 2.07140

15 1.928125 )0.56887 0.28443 )1.07909 2.16074

16 2.000000 )0.42385 0.21192 )1.11476 2.22952

Figure 10. Lennard-Jones convex underestimators with concave and nonconcave perturbations.
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domain into nine regions as before, this time applying the a update proce-
dure to both q1 and q2 we obtain the parameters in Table 5. In this table
ki :¼ Hx

ii �
P

j6¼i
max jHx

ijj;H
x
ij

n o
, where i 6¼ j: ki is the lower bound on the cur-

vature of f as estimated by the interval Gerschgorin Theorem. When ki is
negative a valid ai is determined from convexity considerations as

�ki
2 . We

see from Table 5 that a11 is bounded by convexity considerations while a32 is
bounded by underestimation considerations. The negative of the perturba-
tion function qðxÞ, plotted in Figure 11, in nonconvex and significantly
tighter than the perturbation functions depicted in Figure 4.

Table 5. Parameters defining q1ðx1Þ and q2ðx2Þ for Lennard-Jones potential with negative a11 < 0 and

a32 < 0

k xk
1 k1 ak

1 bk
1 ck

1

0 0.00

1 0.50 1.700 )0.8500 0.69297 0.00000

2 0.75 )4.925 2.4625 0.50234 0.09531

3 1.00 )14.200 7.1000 )1.88828 1.88828

xk
2 k2 ak

2 bk
2 ck

2

0 0.00

1 0.25 )9.000 4.500 1.5000 0.00000

2 0.50 )6.000 3.000 )0.3750 0.46875

3 1.00 3.000 )1.125 )0.5625 0.56250

Figure 11. Nonconvex perturbation function for illustration 2.
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5.5. DOMAIN SPLITTING

While the aforementioned strategy for determining good underestimators
through the use of nonconcave perturbations is useful, the requirement
that stationary points be excluded from all convex regions of the perturba-
tion function may be too restrictive to allow the underestimator to be
strengthened. The following illustration demonstrates such a case.

Illustration 4: Consider the function fðxÞ ¼ sinðxÞ on the domain
x 2 ½0; 3p�. The second derivative of this function is f 00ðxÞ ¼ � sinðxÞ. Let
the domain be partitioned into 24 equal intervals where the end points are
defined such that xk ¼ kp

8 . A valid underestimation function can be derived
by setting

ak ¼ sin
kp
8

	 


; k ¼ 1; . . . ; 4;

ak ¼ sin
ðk� 1Þp

8

	 


; k ¼ 5; . . . ; 8;

ak ¼ 0; k ¼ 8; . . . ; 16;

ak ¼ sin
kp
8

	 


; k ¼ 17; . . . ; 20;

ak ¼ sin
ðk� 1Þp

8

	 


; k ¼ 21; . . . ; 24:

In the interval ½x8;x16�, f00ðxÞ is positive so the a values in these regions
may be negative while maintaining the convexity of /ðxÞ. However, if the
stationary point condition (13) is enforced it is found that jfjO10�8 in this
interval and therefore the attainable improvement is negligible. This is
because condition (13) is too restrictive, precluding a stationary point from
existing in the interval ½x8; x16�, whereas the ideal position for a stationary
point would be at 3p

2 . The underestimator is depicted in Figure 12.
This phenomenon occurs when the convex regions of f lie within the

interior of an interval. In the following proposition it is shown that the
a’s defining a valid convex underestimator may be computed by partition-
ing the interval of interest, applying Proposition 5.5 to each of the result-
ing subintervals, then computing the b and c parameters using the full
interval.

PROPOSITION 5.6. Let x 2 R and x 2 R define an interval ½x;x�. This
interval is partitioned into N subintervals defined by xk, k ¼ 0; . . . ;N, where
x ¼ x0 < x1 < � � � < xk < � � � < xN ¼ x. Let qijðxÞ : ½xi;xj� ! R denote a
smooth, piecewise quadratic function with the following properties:

q00ijðxÞ ¼ �2ak for allx 2 ½xk�1;xk�
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and

qijðxiÞ ¼ 0; qijðxjÞ ¼ 0:

If qIJðxÞP0 for all x 2 ½xI; xJ� and qJKðxÞP0 for all x 2 ½xJ; xK� then
qIKðxÞP0 for all x 2 ½xI; xK�, where x0OxI < xJ < xKOxN.

Proof. First note the following properties of the derivatives of qij at the
end points xi and xj,

q0ijðxiÞP0;

q0ijðxjÞO0:

These properties follow from the positivity of qij on ½xi;xj� and the end
point conditions, qijðxiÞ ¼ 0, and qijðxjÞ ¼ 0. Now consider the change in
the slope between xi and xj.

q0ijðxjÞ � q0ijðxiÞ ¼
Z xj

xi
q00ijðxÞ dx ¼ �

Xj

k¼iþ1
2akðxk � xk�1Þ:

Using these expressions with the endpoint properties,

q0IJðxJÞ ¼ q0IJðxIÞ �
XJ

k¼Iþ1
2akðxk � xk�1ÞO0;

q0JKðxJÞ ¼ q0JKðxKÞ þ
XK

k¼Jþ1
2akðxk � xk�1ÞP0:

Figure 12. sinðxÞ and an underestimator sinðxÞ � qðxÞ.
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The function qIK is smooth, therefore q0IKðxJÞ is well defined,

q0IKðxJÞ ¼ q0IKðxIÞ �
XJ

k¼Iþ1
2akðxk � xk�1Þ

¼ q0IKðxKÞ þ
XK

k¼Jþ1
2akðxk � xk�1Þ:

From this we derive the following inequality:

� q0IJðxIÞ þ
XJ

k¼Iþ1
2akðxk � xk�1Þ

þ q0IKðxJÞ þ q0JKðxKÞ þ
XK

k¼Jþ1
2akðxk � xk�1Þ � q0IKðxJÞP0;

which, on cancelling terms, becomes

ð�q0IJðxIÞ þ q0IKðxIÞÞ þ ðq0JKðxKÞ � q0IKðxKÞÞP0:

Introducing the notation DI :¼ q0IKðxIÞ � q0IJðxIÞ and DK :¼ q0IKðxKÞ
�q0JKðxKÞ

DKODI:

From the endpoint properties of qIK,

qIKðxKÞ � qIKðxIÞ ¼
Z xK

xI
q0IKðxÞdx ¼

Z xJ

xI
q0IJðxÞ

þ DIdxþ
Z xK

xJ
q0JKðxÞ þ DKdx ¼ DIðxJ � xIÞ þ DKðxK � xJÞ ¼ 0:

Hence, DKO0 and DIP0. The required result follows: for x 2 ½xI; xJ�

qIKðxÞ ¼
Z x

xI
q0IKðtÞdt ¼

Z x

xI
q0IJðtÞ þ DIdt ¼ qIJðxÞ þ DIðx� xIÞP0

as qIJðxÞP0, DIP0 and ðx� xIÞP0; for x 2 ½xJ;xK�

qIKðxÞ ¼
Z x

xK
q0IKðtÞdt ¼

Z x

xK
q0JKðtÞ þ DKdt ¼ qJKðxÞ þ DKðx� xKÞP0

as qJKðxÞP0, DKO0 and ðx� xKÞO0.

Illustration 4 continued: This example shows how the underestimation of
the function in Illustration 4 can be tightened using Proposition 5.6. As
before, the domain is partitioned into 24 equal intervals and the eigen-
value intervals are calculated. As seen in the previous illustration, f00ðxÞ is
positive in the interval ½x8;x16� so the a values in these regions may be
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negative while maintaining the convexity of /ðxÞ. Instead of computing
the underestimator over the interval ½x0;x24� we first calculate the under-
estimators over each of the intervals ½x0; x12� and ½x12; x24� separately. In
this way a stationary point may be introduced in the interval ½x8;x16� at
x12. The calculations over the two subintervals are carried out as before
and only the a values from these calculations are saved (Table 6). Using
these a values the b and c are calculated over the entire interval ½x0; x24�.
From Proposition 5.6 the underestimator derived from this calculation is
guaranteed to be a convex underestimator of fðxÞ (Table 6).
The underestimator is depicted in Figure 13 and the perturbation func-

tion q is represented in Figure 14. Notice the nonconcavity of q and the
presence of a local minimum at x12.

6. Implementation

Two aspects of the implementation of the a-spline underestimators are dis-
cussed in this section, the partitioning of the domain, and the construction
of the convex underestimators. The key to the efficient computation of the
underestimator lies in the storage and reuse of interval Hessian data. A
binary tree is an appropriate data structure for the management of this
data. The upper and lower bounds that define the subregion of a partition
of the domain are saved at each node of this tree. In addition, estimated
ranges of the a’s are saved at the leaf nodes. In particular, upper and lower
bounds on the a values that pertain to the the region, are saved. The upper
bound, �ax

i , on the ai required to convexify the nonconvex function
f : ðx1; . . . ; xnÞ ! R over a domain x is defined using the interval
Gerschgorin formula,

axi :¼ �0:5 Hx
ii �

X

j 6¼i
max jHx

ijj; jH
x
ijj

n o
 !

:

Table 6. sin(x) a values

i ai i ai

1 0.19134 13 )0.46193
2 0.35355 14 )0.35355
3 0.46194 15 )0.19134
4 0.50000 16 0.00000

5 0.50000 17 0.19134

6 0.46194 18 0.35355

7 0.35355 19 0.46194

8 0.19134 20 0.50000

9 0.00000 21 0.50000

10 )0.19134 22 0.46194

11 )0.35355 23 0.35355

12 )0.46193 24 0.19134
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Figure 13. sinðxÞ and an underestimator sinðxÞ � qðxÞ.

Figure 14. Perturbation function qðxÞ.
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This formula differs from that proposed by Adjiman et al. (1998b) in
allowing ai to take positive values. In a similar way a lower bound, axi on
ai over x may be defined,

axi :¼ �0:5 H
x
ii �

X

j 6¼i; 0 = j2 Hx
ij

min jHx
ijj; jH

x
ijj

n o
0

@

1

A:

In the sequel we will refer to the partitioning of the problem domain in the
course of a branch and bound process as the branch and bound partition.
The partition that results from the partitioning of a function domain for the
purposes of constructing an a-spline underestimator of that function will
be called the a-spline partition.

6.1. COMPUTATION OF CONVEX UNDERESTIMATORS

Given an a-spline partition the first step in the computation of the underes-
timator is the extraction of interval and a data from this partition. This is
illustrated in Figure 15(a) and (b) which represent an a-spline partition.
Figure 15(a) demonstrates the extraction of xk1 and ak1 data from this parti-
tion. To guarantee the convexity of the underestimator the largest aki over
any subinterval ½xk�l1 ;xk1� is required. The shaded regions in Figure 15(a)
show those regions of the partition that contribute to the definition of
q1ðxÞ. Similarly Figure 15(b) shows the data defining q2ðxÞ. A shaded
region in the partition that defines aki is denoted xi;k.
In the second step the domain is split into a-adjustment subintervals as

discussed in Section 5.5. This is illustrated in Figure 16. In this figure five
subregions have negative a’s. Consecutive intervals with negative a’s that
are flanked by regions with positive a’s are split so that any consecutive set
of such intervals lies at an end of an a-adjustment subinterval. The two a-
adjustment subintervals resulting from this operation are indication by the

Figure 15. Extraction of a values for a-spline calculation.
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dashed intervals in Figure 16. The a’s associated with intervals with nega-
tive a’s are initialized to zero then adjusted, as in Section 5 to values
between 0 and a.
Finally, the b and c parameters are computed using Equations 7–9.

6.2. DOMAIN PARTITIONING

The manner and extent to which the domain is (a-spline) partitioned influ-
ences both the tightness of the underestimators as well as the cost of calculat-
ing them. Here a relatively simple a-spline partitioning approach is proposed
wherein the domain is partitioned into a grid at the root node of the branch
and bound tree and refined as the branch and bound tree expands. The initial
grid for the a-spline underestimator of a function fðx1; . . . ;xnÞ is constructed
through the recursive bisection of the intervals of the variables. A parameter
Ninit defines the number of initial bisections to be used in the construction of
this grid into 2Ninit regions. To keep the size of the a-spline partition to a man-
ageable size we define a parameter Nmax. At any iteration of the branch and
bound algorithm further partitioning of the a-spline partition occurs only if
the number of regions in this partition that intersect with the current branch
and bound region is less than Nmax. In Figure 17(a) the initial partition is
defined using the parameter Ninit ¼ 5. Figure 17(b) shows the the branch and
bound and the a-spline partition on the sixth iteration where the parameter
Nmax ¼ 2. The regions of the branch and bound partition labelled A, B and C
each include eight regions of the a-spline partition. No refinement of the
a-spline partition is to be done in these regions as 8 exceeds Nmax. Similarly D
cannot be refined as this region contains four a-spline regions. The a-spline
partition will be refined in the E and F regions when these branch and bound

Figure 16. Domain splitting for a-adjustment.

Figure 17. Branch-and-bound and a-spline underestimator partitioning.
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nodes are processed. The refinement of an a-spline partition at nodes of
the branch and bound tree that are not root nodes occurs as follows. First,
the region x0 of the a-spline partition that has the largest influence on the
strength of the underestimation is selected based on the criterion,

max
k

max
i
ðxki � xk�1i Þðaki � aki Þ:

The index of the variable along which the chosen region is bisected is then
chosen as

argmax
j

H
x0

ij �Hx0

ij

� �
xj � xj
� �

:

7. Computational Experiments

A set of computational experiments were carried out to assess whether the
gains in the convergence rate of a branch and bound algorithm can offset
the computational cost of calculating the a-spline functions. The aBB algo-
rithm as implemented in C by Adjiman et al. (1998a) was augmented with
an implementation of the a-spline convex underestimators. Comparisons
between the a-spline underestimator defined using a range of Ninit and Nmax

parameters demonstrate the effect of the a-spline partitioning strategy.

7.1. SIX-HUMP CAMELBACK FUNCTION

The following function is known as the Six-Hump Camelback function
(Dixon and Szegö, 1975),

fðx1; x2Þ ¼ 4x21 � 2:1x41 þ
1

3
x61 þ x1x2 � 4x22 þ 4x42:

Two problems based on this function were used as a basis of comparison
between solution strategies.

Six-Hump Camelback function: A bound constrained minimization prob-
lem with six local solutions was formulated with the objective function,

min
x2½�2:0;2:0�2

fðx1; x2Þ:

The global solution to this problem is ðx�1;x�2Þ ¼ ð0:08984;�0:71266Þ,
where the objective function is fðx�1; x�2Þ ¼ �1:03163.
In these computational tests the lower bounding problem was
formulated as,

min
x2x

fðx1; x2Þ;

where x is the domain. This problem was solved using the aBB algorithm
without acceleration techniques such as domain reduction. Convergence
was based on the criterion ðUB� LBÞO1� 10�6 where UB denotes the
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best known upper bound on the solution and LB a rigorous lower bound
on the global solution. The results of seven runs are summarized in
Table 7. Ninit defines the initial grid structure as discussed in Section 6.2.
Subsequent refinement is controlled by the parameter Nmax. The lower
bound found at the root node is denoted LB0 in this table. The number of
iterations and the CPU time on an HP J2240 are labelled ‘‘iters’’ and
‘‘CPU’’, respectively.
The first line of this table refers to the performance of the classical aBB

approach using the scaled Gerschgorin method for the calculation of a’s. All
runs using the a-spline underestimator performed better than the classical
aBB. The number of iterations for convergence decreases with increasing grid
refinement, as expected. The CPU time shows a similar trend, except for
Ninit ¼ 2.

Triple Six-Hump Camelback function: A more complex bound constrained
minimization problem was formulated based on a nonseparable objective
function which is the sum of three Six-Hump Camelback functions,

min
x2½�2:0;2:0�4

fðx1; x2Þ þ fðx2; x3Þ þ fðx3;x4Þ:

The lower bounding problem was formulated as follows:

min
x2x;w2w

w1 þ w2 þ w3

subject to

fðx1; x2ÞOw1;

fðx2; x3ÞOw2;

fðx3; x4ÞOw3:

The aBB approach was applied to this problem, with branching on x vari-
ables only, and bound updates on the w variables only. Table 8 summa-
rizes the results of seven runs. As before the a-spline based
underestimation scheme performed better than the classical aBB in all
cases. Note that the improvement in the computational performance is

Table 7. Computational results for Six-Hump Camelback function

Ninit Nmax LB0 iters CPU (s)

0 0 )3.753 · 102 61 0.57

1 256 )2.056 · 102 38 0.42

2 256 )1.508 · 102 38 0.50

3 256 )8.720 · 101 38 0.38

4 256 )7.030 · 101 36 0.37

5 256 )4.130 · 101 33 0.37

6 256 )3.602 · 101 30 0.35
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greater in this problem simply because there are more variables that partic-
ipate in a-underestimated nonconvex functions in this problem. From this
table we observe that in this problem the structure of the initial grid
appears to be less influential than the refinement of this grid.

7.2. SHUBERT FUNCTION

The problems in this section are based on the Shubert function,

fðxÞ :¼
X5

i¼1
i cosðð1þ iÞxþ iÞ;

a multimodal test function for testing nonlinear programming algorithms.

The convergence tolerance ðUB�LBÞ
jLBj O0:001 was used for the problems

based on the Shubert function.

Shubert function: The following bound constrained minimization problem
entails the minimization of the Shubert function,

min
x2½�10;10�

fðxÞ:

Table 9 shows trends similar to those of Table 8. Refinement of the a-spline
partition generally lead to improved performance. In the final run (line 7)
the CPU time increased slightly relative to that of the previous run even
though the number of iterations required for convergence decreased. There
was also a small increase in CPU time between the runs in lines 2 and 7.

Table 8. Computational results for triple Six-Hump Camelback function

Ninit Nmax LB0 iters CPU (s)

0 0 )11.256 · 102 4971 64.98

1 16 )6.168 · 102 1111 20.27

1 256 )6.168 · 102 665 15.34

2 16 )4.519 · 102 1111 20.21

2 256 )4.519 · 102 663 15.38

4 16 )2.408 · 102 1111 20.13

4 256 )2.095 · 102 663 15.32

Table 9. Computational results for Shubert function

Ninit Nmax iters CPU (s)

0 0 2237 586.82

2 16 489 161.33

2 64 297 122.76

2 256 217 119.66

4 16 489 160.28

4 64 296 120.20

4 256 217 120.97
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Double Shubert function: The Shubert function was used to construct a
more complex ‘‘double Shubert’’ function in the following minization prob-
lem:

min
x2½�10;10�3

fðx1Þfðx2Þ þ fðx2Þfðx3Þ:

The lower bounding problem was formulated in two ways which will be
referred to as ‘‘A’’ and ‘‘B’’.
In formulation A the function

gðx1; x2Þ ¼ fðx1Þfðx2Þ
is treated as a general C2 continuous function and the lower bounding
problem is formulated applying a underestimators to bivariate functions.
The following lower bounding formulation results:

min
x2½�10;10�3

gðx1; x2Þ þ gðx2;x3Þ: ðAÞ

The lower bounding formulation B is as follows:

min
x2½�10;10�3w2R5

w4 þ w5

subject to

fðx1ÞOw1;

fðx2ÞOw2;

fðx3ÞOw3;

w2w1 þ w1w2 þ w1w2Ow4; ðBÞ
w2w1 þ w1w2 þ w2w1Ow4;

w2w3 þ w3w2 þ w2w3Ow5;

w2w3 þ w3w2 þ w2w3Ow5:

In this formulation the objective function is underestimated through the
introduction of auxiliary variables w1; . . . ;w5, the use of convex envelopes
for the underestimation of bilinear terms (McCormick, 1976), and the use
of a-spline underestimators for the underestimation of the univariate
Shubert function.
Computational results for both formulations are tabulated in Table 10.

The a-spline underestimation performed far better than the classical aBB
for both formulations. In formulation A the classical aBB took 341% of
the iterations required by the a-spline method and in formulation B this
percentage increased to 51,252%. These results can be attributed primarily
to the quality of the a-spline underestimator being better for univariate
functions that for bivariate ones.
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The progress of the upper and lower bounds is shown in Figure 18(a)
and (b) for formulations A and B. In both of these figures we note a
bumpy convergence of the classical aBB lower bound and a much smoother
convergence of the a-spline lower bound. Relatively small regions of the
problem domain in which the objective function is very concave influence
the classical aBB underestimators to a larger degree than they influence the
a-spline underestimators resulting in this convergence behaviour.

8. Conclusion

The refinement of the aBB convex underestimator, proposed in this
paper, can be significantly tighter than the classical aBB underestimator.
In some cases the underestimator closely approximates the convex enve-
lope. The perturbation function, a smooth, piecewise quadratic, function
with varying curvature, may be nonconvex, yet is guaranteed to form a
convex underestimator when subtracted from the function being underes-
timated. The main computational effort in the calculation of the parame-
ters of the a-spline underestimator lies in the evaluation of the interval
Hessian matrix in a potentially large number of subregions of the func-
tion domain. This effort can be offset by storing the interval Hessian data
that are generated at the nodes in the branch and bound tree and reusing
this information in other nodes of the tree. Computational results show

Table 10. Double Shubert function computational results

Ninit Nmax iters CPU (s)

A 0 0 250952 34169

4 256 73427 6303

B 0 0 51150 62021

4 256 998 1672

Figure 18. Double Shubert function computational results.
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that the proposed underestimator is indeed more effective then the classi-
cal approach.
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